3,995 research outputs found

    Organizational documents : a guide for partnerships and professional corporation

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1487/thumbnail.jp

    International business; Management series

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1827/thumbnail.jp

    Managing the malpractice maze

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1215/thumbnail.jp

    Violence at work : how to safeguard your firm

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1608/thumbnail.jp

    Cell patterning on photolithographically defined parylene-C:SiO2 substrates

    Get PDF
    Cell patterning platforms support broad research goals, such as construction of predefined in vitro neuronal networks and the exploration of certain central aspects of cellular physiology. To easily combine cell patterning with Multi-Electrode Arrays (MEAs) and silicon-based ‘lab on a chip’ technologies, a microfabrication-compatible protocol is required. We describe a method that utilizes deposition of the polymer parylene-C on SiO(2 )wafers. Photolithography enables accurate and reliable patterning of parylene-C at micron-level resolution. Subsequent activation by immersion in fetal bovine serum (or another specific activation solution) results in a substrate in which cultured cells adhere to, or are repulsed by, parylene or SiO(2) regions respectively. This technique has allowed patterning of a broad range of cell types (including primary murine hippocampal cells, HEK 293 cell line, human neuron-like teratocarcinoma cell line, primary murine cerebellar granule cells, and primary human glioma-derived stem-like cells). Interestingly, however, the platform is not universal; reflecting the importance of cell-specific adhesion molecules. This cell patterning process is cost effective, reliable, and importantly can be incorporated into standard microfabrication (chip manufacturing) protocols, paving the way for integration of microelectronic technology

    Ancient dissolved methane in inland waters revealed by a new collection method at low field concentrations for radiocarbon (14C) analysis

    Get PDF
    Methane (CH4) is a powerful greenhouse gas that plays a prominent role in the terrestrial carbon (C) cycle, and is released to the atmosphere from freshwater systems in numerous biomes globally. Radiocarbon (14C) analysis can indicate both the age and source of CH4 in natural environments. In contrast to CH4 present in bubbles released from aquatic sediments (ebullition), dissolved CH4 in lakes and streams can be present in low concentrations compared to carbon dioxide (CO2), and therefore obtaining sufficient aquatic CH4 for radiocarbon (14C) analysis remains a major technical challenge. Previous studies have shown that freshwater CH4, in both dissolved and ebullitive form, can be significantly older than other forms of aquatic C, and it is therefore important to characterise this part of the terrestrial C balance. This study presents a novel method to capture sufficient amounts of dissolved CH4 for 14C analysis in freshwater environments by circulating water across a hydrophobic, gas-permeable membrane and collecting the CH4 in a large headspace volume. The results of laboratory and field tests show that reliable dissolved δ13CH4 and 14CH4 samples can be readily collected over short time periods (∼4–24h), at relatively low cost and from a variety of surface water types. The initial results further support previous findings that dissolved CH4 may be significantly older than other forms of aquatic C, and is currently unaccounted for in many terrestrial C balances and models. This method is suitable for use in remote locations, and could potentially be used to detect the leakage of unique 14CH4 signatures from point sources into waterways, e.g. coal seam gas and landfill gas

    Post-operative monitoring of intestinal tissue oxygenation using an implantable microfabricated oxygen sensor

    Get PDF
    Anastomotic leakage (AL) is a common and dangerous post-operative complication following intestinal resection, causing substantial morbidity and mortality. Ischaemia in the tissue surrounding the anastomosis is a major risk-factor for AL development. Continuous tissue oxygenation monitoring during the post-operative recovery period would provide early and accurate early identification of AL risk. We describe the construction and testing of a miniature implantable electrochemical oxygen sensor that addresses this need. It consisted of an array of platinum microelectrodes, microfabricated on a silicon substrate, with a poly(2-hydroxyethyl methacrylate) hydrogel membrane to protect the sensor surface. The sensor was encapsulated in a biocompatible package with a wired connection to external instrumentation. It gave a sensitive and highly linear response to variations in oxygen partial pressure in vitro, although over time its sensitivity was partially decreased by protein biofouling. Using a pre-clinical in vivo pig model, acute intestinal ischaemia was robustly and accurately detected by the sensor. Graded changes in tissue oxygenation were also measurable, with relative differences detected more accurately than absolute differences. Finally, we demonstrated its suitability for continuous monitoring of tissue oxygenation at a colorectal anastomosis over a period of at least 45 h. This study provides evidence to support the development and use of implantable electrochemical oxygen sensors for post-operative monitoring of anastomosis oxygenation

    Catchment land use effects on fluxes and concentrations of organic and inorganic nitrogen in streams

    Get PDF
    We present annual downstream fluxes and spatial variation in concentrations of dissolved inorganic nitrogen (NH4+ and NO3−) and dissolved organic nitrogen (DON) in two adjacent Scottish catchments with contrasting land use (agricultural grassland vs. semi-natural moorland). Inter- and intra-catchment variation in N species and the relation to spatial differences in agricultural land use were studied by determining catchment N input through agricultural activities at the field scale and atmospheric inputs at a 25 m grid resolution. The average agricultural N input of 52 kg N ha−1 yr−1 to the grassland catchment was more than 4 times higher than the input of 12 kg N ha−1 yr−1 to the moorland catchment, supplemented by 12.3 and 8.2 kg N ha−1 yr−1 through atmospheric deposition, respectively. The grassland catchment was associated with an annual downstream total dissolved nitrogen (TDN) flux of 14.4 kg N ha−1 yr−1, which was 66% higher than the flux of 8.7 kg ha−1 yr−1 from the moorland catchment. This difference was largely due to the NO3− flux being one order of magnitude higher in the grassland catchment. Dissolved organic N fluxes were similar for the two catchments (7.0 kg ha−1 yr−1) with DON contributing 49% to the TDN flux in the grassland compared with 81% in the moorland catchment. The results highlight the importance of diffuse agricultural N inputs to stream NO3− concentrations and the importance of quantifying all the major aquatic N species for developing a better understanding of N transformations and transport in the atmosphere-soil-water system
    • …
    corecore